SOLUTIONS

1. A circle rolls along the inside arc of the parabola y = 2. What is the radius of the
largest circle that will eventually reach the bottom of the parabola without getting stuck

before getting there?

Answer. The largest circle that will roll to the bottom of the parabola is one with radius
1/2.

Solution. A circle through the origin and center on the positive y axis has the equation

22+ (y — )2 =r% r > 0. It intersects the parabola y = 22 at points = for which

2+ (x2 =)t =12
et (1-2r)22 =0
22 (:1;2 +(1— 27‘)) =0.

There will be three distinct intersection points if and only if 22 = 2r — 1 has two distinct
solutions, which happens if and only if 2r —1 > 0, or > 1/2. So for r < 1/2, the circle will
be tangent to the parabola at the origin and will not intersect it at any other point. Such
a circle will roll to the bottom of the parabola without getting stuck (that is, it will meet
the parabola at one point, the point of tangency, along the path of the parabola; this can
be seen by appropriately raising the circle through the origin and shifting it right or left to

coincide with the circle on the parabolic path; see left diagram below).

For r > 1/2, the circle through the origin and center on the y-axis will intersect the
parabola at three distinct points. So shifting this circle upward until it is tangent to the
parabola, we see that this circle will not roll to the bottom of the parabola (the points of
tangency are symmetric across the y-axis; see right diagram above).

We conclude that a circle will roll to the bottom of the parabola if and only if r < 1/2,

and the largest of these circles is r = 1/2.



2. Arrange numbers in an infinite array of three columns as defined recursively in the
following manner. The first row is [1, 2, 4], and for n > 1, row n is [a, b, a+b—+1],
where a and b, with a < b, are the two smallest positive integers that have not yet

appeared as entries in rows 1,2,...,n—1. The first two rows of the array are

Column 1 Column 2 Column 3
Row 1 1 2 4
Row 2 3 5 9

Note that after row 1 is given, 3 and 5 are the two smallest positive integers that have
not yet been placed, so they appear in columns 1 and 2 of row 2. In which row and

column will each of the following numbers appear?

a. 2007 b. 2008 c. 2009

Answer. 2007 is in row 803, column 2; 2008 is in row 804, column 1; 2009 is in row 402,

column 3.

Solution. To get an idea, here are the first few rows of the array:

Column 1 Column 2 Column 3

Row 1 1 2 4
Row 2 3 5 9
Row 3 6 7 14
Row 4 8 10 19
Row 5 11 12 24
Row 6 13 15 29
Row 7 16 17 34
Row 8 18 20 39
Row 9 21 22 44
Row 10 23 25 49
Row 11 26 27 54
Row 12 28 30 99
a. We see that Column 2
Row 3 =4-0+3 7 =10-0+7
Row 7 —4-1+3 17 =10-1+7

Row 11 =4-2+43 27T =10-2+7



and it’s pretty clear this pattern will persist. Since 2007 = 10- 200+ 7, we see that 2007 will
occur in row 4 - 200 + 3 = 803 of the third column.

b. We see that

Column 2
Row 4 =4-0+14 8 =10-0+8
Row 8 =4-1+14 18 =10-1+38
Row 12 =4-2+ 4 28 =10-2+38

and from this we conclude that 2008 will occur in the first column in row 4 - 200 + 4 = 804.

c. In this case

Column 3
Row 2 =4-0+2 9 =10-0+9
Row 4 =4-0+14 19 =10-1+4+9
Row 6 =4-1+42 29 =10-2+9
Row 8 =4-1+4 39 =10-3+9
Row 10 =4-2 + 2 49 =10-4+9
Row 12 =4-2+4 59 =10-5+9

and because 2009 = 10-200+9, we conclude that 2009 occurs in column 3 in row 4-100+2 =
402.

Here’s a more formal proof. The preceding table suggests the following pattern for all k:

Column 1 Column 2 Column 3

Row 4k+1  10k+1 10k+2  10(2k)+4

Row 4k+2  10k+3 10k+5  10(2k)+9
Row 4k+3  10k+6 10k+7  10(2k+1)+4
Row 4k+4  10k+8  10k+10 10(2k+1)+9
To verify this pattern persists, we can induct on k. As we’ve seen, the pattern holds
for £k = 0,1,2, so suppose it’s true for £ = 0,1,2,..., K. The induction hypothesis implies
that first 4K 44 rows contain all integers from 1 to 10(K +1), in addition to, in column 3,
10(K+1)+4, 10(K42)+4, ... , 10(2K+1)+4 and 10(K+1)+9, 10(K+2)+9, ... , 10(2K+1)+9.
The two smallest positive integers that have not been placed yet are 10(K+1)+1 and
10(K +1)+2, so they must go into columns 1 and 2 of row 4(K +1)+1, respectively, and
their sum, 10 (2(K+1)) + 4, goes into column 3. The next smallest number that hasn’t yet
appeared is 10(K +1)+3 and so it will go in the first column of row 4(K +1)+2. Now
10(K +1)+4 has already been placed (in column 3), but 10(K +1)+5 hasn’t occurred, so it



will go to column 2 in row 4(K +1)-+2. The next two numbers that haven’t been taken are
10(K+1)+6 and 10(K+1)47, so these will go in columns 1 and 2 of column 4(K +1)+3,
respectively. Then 10(K +1)+48 will go into column 1 of row 4(K +1)+4. Finally, since
10(K+1)+9 has already been placed, but 10(K+1)+10 hasn’t, the latter will go into column

2 of row 4(K +1)+4. In summary, the next four rows of the array are

Column 1 Column 2 Column 3
Row 4(K +1)+1  10(K+1)+1  10(K+1)+2 10(2(K+1))+4
Row 4(K+1)+2  10(K+1)+3  10(K+1)+5 10(2(K+1))+9
Row 4(K +1)+3  10(K+1)+6  10(K+1)+7 10(2(K+1)+1)+4
Row 4(K+1)+4  10(K+1)+8 10(K+1)+10 10(2(K+1)+1)+9

Because this set of rows has the desired form for £ = K+1, the proof is complete by induction.

3. Consider the set of all isosceles triangles whose base is on the non-negative z-axis (that
is, z > 0) and whose (third) vertex is on the curve y = 2(4 —2)3, 0 < 2 < 4 (for
example, AABC, with A =(1,0), B = (3,3),C = (5, ())). Among these triangles, which

one has the largest area, and what is it?

Answer. The triangle of maximum area has base vertices at (0,0) and (16/5.0), and its
51293
= 35.38944.

area is

Solution. Suppose an isosceles triangle has its vertex at (.7;, (4 — :17)3) The longest the
base can be for this vertex is the one from (0,0) to (2x,0) (on the z-axis), and the area of

this triangle is A(z) = 2%(4 — x)3. We need to maximize this value over the interval [0, 4].
Clearly, A(0) = A(4) =0, and

Al(z) =20(4 - 2)° = 32°(4 — 2)® = 2(4 — 2)*(2(4 — ) — 3z) = 2(4 — )*(8 - 52).

The derivative is 0 for z = 0,z = 4, and z = 8/5. So the maximum area occurs at

xz = 8/5 (more formally, at that critical point the curve is concave down since A”(8/5) =

(4 —2)%(8 — b5z) — 22(4 — x)(8 — 5z) — Sa(4 — .«1:)2\1‘:8/5 = —8(4—8/5)2 <0.)

Therefore, the maximum area is

8 8\ 2 8\3 26\ s12\3 96.96.33  9l233
A<_):<_> <4__) _ (= <_) _ — 2 2 _ 3538944,
5 5 5 52/ \5 59 5°




4. Define a sequence of positive numbers by a, = a, =1 and for n > 2,

2

a, a a 1 1 1

(an—b—1>2:1_|_2 _2_|__3_|_..._|_¢ +_2+_2+...+ 5
a,  a a al  as (a, )

Prove that a isa rational number for all n.
Solution. Applying the recursion formula,
2 by 1
() =a,+2|=|+—==1+2+1=4, SO a, = 2, and
3 0 a, a2 3

a a 1 1
(a4)2:a0+2<_2+_3>+a_2+—:1+2(1+2)+(1+1):9, so a, = 3.

a,  a : a22
For n > 4,
a a a 1 1
(“n+1)2:1+2 P e e s T T SRLE & 2
a,  a, a al  a (a, )
a a. a a 1 1 1
=142 |2+ 34 p g |t 5|+ -
G G 42 n—1 @9 (0, _5) (@,_,)
a a aqa 1 1 1 a 1
:1+2<—?+—3+---+ ”‘1)+<—2+ St 2)+2 n_ -
ay ) a4, o aq ay (a‘nf?) a1 (a‘n,fl)
a 1
=a’+2—1 4 ’
a1 (a‘n,fl)
2
L1
=la
K an—l
so a, , =a, + - Now, assuming by induction that ¢ and a _, are rational numbers,
n—1

it follows that a 418 also a rational number, because the sum of two rational numbers is a

rational number. Therefore, by induction, a is rational number for all n.

5. Squares are constructed outward on the respective sides of a parallelogram. Prove that

the centers of these four squares are the vertices of a square.



Solution 1. (Synthetic geometry) In the figure, WXY Z is a parallelogram, A, B,C, D are
the centers of the squares, O is the center of the parallelogram, EG and F'H are lines through
O parallel to the sides of the parallelogram as shown, and « is the acute angle (the result is

clearly true if @ = 90°) between adjacent sides of the parallelogram.

B
F X
A G
F O C

A HV
D

Then |AE| = |OF| = |CG| = |OH| = %\W’Z\ and |OF| = |BF| = |OG| = |DH| = %|YZ|.
Furthermore, /AEO = /BEO = /CFO = /DHO = 90°+aq, so triangles AOFE. BOF,COG
and DOH are congruent by SAS. But then |AO| = |BO| = |CO| = |DO]| because corre-
sponding sides of congrucent triangles are equal. Also, /AOF = /COG and /BOF = /COH
so AOC and BOD are straight lines (EG and F'H are straight lines). Finally,

/BOC = /BOF + /[FOG + /GOC
=/BOF +a+ /EBO = (/BOF + /FBO) + «
= (180° — /BFO) + a = (180° — (90° + o) + o = 90°.

Putting this together, ABC'D is a quadrilateral whose diagonals intersect in a right angle

and whose vertices are equidistant from the center; this implies that ABC' D is a square.

Solution 2. (Coordinate geometry) Referring to the figure in the first solution, let F' = (b, ¢)

and G = (a,0). Then the coordinates of the vertices of the parallologram are
W = (—a+b,c), X =(a+b,c), Y =(a—0b,—c), Z=(—-a—-c¢,—b),
and the coordinates of the centers of the squares are

A= (—a—cb), B = (b,a+c), C = (a+c,—b), D = (=b,—a — c).



The latter shows that A and C are symmetric with respect to the origin O, and similarly for
B and D, so the diagonals of ABCD intersect at O. Also

|AO)? = (—a — ¢)? + b* = |BOP?

so A, B,C, D are equidistant from the origin. Finally, the diagonals are perpendicular be-
cause their slopes are negative reciprocals:

ate and Slope AC = - .
a—+ ¢

Slope BD =

Solution 3. (Vectors) Referring to the figure of the first solution, let u denote the vector
from the origin O to the point F, and v the vector from O to G. Let ut be the vector u
rotated 90° clockwise about O, and v+ the vector v rotated 90° clockwise about O. Then
the centers of the squares are given by the vectors
A =—v+ut, B=u-+v, C=v—ut D=—-u-—vt

We see that A and C are negatives of each other so they have the same length. Also, B and
D are negatives of each other and have the same length. Next, we calculate the lengths of
A and B; for this, let f denote the angle between u and v. Then
A2 = (—viut)-(-viubd) = [v]24 [ut]? - 2v||ut|cos(0+90°) = |v|?+|u|?+2|v||u|sin b
and

B2 = (utvh)-(u+vt) = [u]? + [vE2—2Ju||[vt]| cos(90°—6) = |ul>+|v|?+2|u||v|sin b
and therefore all four vectors A, B, C, D have the same length. Finally,
B-C=(u+v)(v—ut)=uv-uut+vtv-vtult=uv-vtult=uv-uv=0,
so A and B are perpendicular, and therefore the centers of the squares are the vertices of a

square.

Solution 4. (Complex numbers) Orient the parallelogram in the complex plane so that
one vertex is at the origin, let w and z be the coordinates of the vertices at the ends of the
adjacent sides at that vertex as indicated, and let A, B, C, D be the centers of the squares

on the sides of the parallelogram as shown.

N




Then the coordinates of the parallelogram are 0,w, 2z and w + 2. The coordinates of the
centers of the squares are

A= %z + %zem/Q
B=2z+ %w + %wem/2
C=w+ %z — %ze”m
D = %w - %wem/?

Then a straight-forward calculation shows that
B-—A=C-D=%w+2) +%em/2(w—z)

and

Also,
(B — A)e™/? = (%(w +z) + %em/Q(w — z)) emi/? = Hz—w)+ %em/Q(z +w)=B-C,

which shows that the angle between AB and BC'is a right angle and that the length of AB
is equal to the length of BC' (because the one side rotates into the other). In fact, because
of the equalities we’ve already shown, the angles at each of the vertices A, B, C, D are right

angles, and the sides have the same length, so it is a square.

6. For any two numbers a and b in the open interval (—1,1), let & be the binary operation

a-+b
defined b= )
efined by a & 1+ ab

form a group under this operation. For this problem, all you need to know is that the

operation is associative: (a ®b0) ®c = a® (b® c) for all a,b,c in (—1,1). Here’s the

problem: For an arbitrary a in (-1, 1), find a closed algebraic formula fora @ a @ --- @ a.
k

For example, 1/2®1/2 =1/(1+1/4) = 4/5. These numbers

Answer. a®a®---Da=
k

Solution. First, consider k£ = 2, 3,4, 5.

® a—+a 2a
aPha= =
1+a?2 1+4a2’




a4+

11a2 _3ata
202 1+ 3a2’
1+a2

adada=

1+

3a + a®

1432 Ada+4d®
32 +at 14602 +at’
1 + 3a2

4a + 4a3
TG LA Sa+10a® 4 a®
402 +40* 141002 + bat”
1+ 6a2 + gt

a —+
adadDad®a=

1+

adbadadDada=

1+
These numbers look familiar! Recall that
(14 a)® =1+ 5a+ 10a® + 10a® + 5a* + d® (1)
and note that the sum of the underlined terms, the sum of the odd powers in the expansion,
is the numerator of « & a® a® a @ a, and the sum of the even powers is the denominator. So,
we conjecture the formula given in the answer. We’ve seen that it holds for £ = 1,2, 3,4, 5,
so suppose the formula holds for k.
To prove this, return to consider £ = 5. Note that
(1 —a)® =1—-5a+10a® — 10a® + 5a* — a® (2)
and then by subtracting (2) from (1), we get twice the numerator for the case k =5,
(1+a)® = (1—a)® =2(1+ 10a® + 5a*),
and adding (2) to (1), we get twice the denominator,
(1+a)® + (1 - a)® = 2(1+ 10a* + 5a*).
So this is the key. We have, by the inductive assumption,
(1+a)—(1—a)
(1+a)k+ (1 —a)k
a(l+a)f —a(l — a)¥
(1+a)k+ (1 —a)k
a{(1+a)f + (1= a)f) + ((1+a)f = (1 —a)F)
((1 +a)k 4+ (1 - a)k) + a((l +a)h — (1 - a)k)

a—+
a@a@...@
k+1

2
I

C(a+ (A +a)f+(a—1)(1—a)
S (14+a)(1+a)k+(1-a)(l—a)k
__(1_+_a)k+l ——(1-—-a)k+1
o (1+a)k+! 4+ (1 — a)k+!

and the induction is complete.



7. A solid ball of radius 1 is inside, and tangent to, a hollow sphere of radius 3. A light
at the center of the sphere casts a shadow of the ball onto the sphere. Find the surface

area of the shadowed region (on the encompassing sphere).
Answer. The surface area is 97 (2 — \/3) = 7.576084931.

Solution 1. (Two-variable calculus) This can be done with two-dimensional calculus by

applying the formula for surface area of z = f(z,y) over a region R:
A= /'/}/1+f§ +/2dA
i

In our case, f(z,y) = /9 — 22 —y2.

3 1

1

0 3/2
The angle subtended by the ball is 60°, so R is the region inside the circle centered at the

origin whose radius is 3sin30° = 3/2. Therefore, the surface area we want is give by the

formula

2 2
o —2x —2y
A:// 14 + dA
‘p (2\/9—1;2—3/2) (2\/9—:1:2—;1/2)
A ZL'2 U?
= 1 : dA
/B’/ + (9—:1;'2—1/2) + (9—:1;2—1/2)

:/]%/‘ﬁdfl.

Now, switching to polar coordinates, we have

—omfor?| = —or (\fo— /i -3)
0

= —37 (3V3 - 6) = 97 (2 — v/3) = 7.576084931




Solution 2. (One-variable calculus) The shadowed region is generated by revolving the arc
y=+v9—12% 0<z<3/2, about the y-axis.

Y

Therefore, the area we want is

3/2 3/2 du\ 2
A= / (2mx)ds = 27r/ xal 1+ <_y> dx
JO J0 dx
2

32 wdx
0 V9 —ua?
=9 (2 — \/5) (see the first solution).

. 5 dx = 67
0 -

Solution 3. (One-variable calculus) Using the same idea as in Solution 2, let ¢ be the angle
shown in the figure, 0 < ¢ < 7/6.

3 ds = 3d¢o




Then ds = 3sind¢ and = = 3sin ¢, so the integral is

/6 /6 -

A= /0 (27m(3sin¢)) 3do = 187r/0 sin ¢ do
/6

= — 187 cos ¢ = —187 (cos(m/6) — cos0)

0

= 187 (V3/2—1) =97 (2 - V3).

8. Take a positive integer n, and add to it the number of odd digits and subtract the number

of even digits. This give(]s a new number n,. Now repeat this procedure starting with n,
to get n,, then continue with n, to get ny, and so on. For example: 8 =7 -8 -7 — ---
is a cycle of length 2. Similarly, 11 — 13 — 15 —- 17 — 19 — 21 — 21 — ... ends as
a cycle of length 1 (a fixed point), and 996 — 997 — 1000 — 998 — 999 — 1002 —
1000 — 998 — --- ends in a cycle of length 4. Will every starting number eventually

end in a cycle? Prove or disprove.

Answer. Yes, every number must end in a cycle. It’s easy to check that it’s true for all

single-digit numbers.

Idea. The result will follow if we can show the sequence is bounded. The jumps from one
number to the next are small, so it can’t get much beyond 200...0 for sufficient number of

0’s, from whence the sequence will steadily decrease to a number below 200...0.

Solution. We’ll argue by considering the number of digits in the starting number.

Consider 2-digit numbers. A 2-digit number that is not a fixed point under the transfor-
mation will change by 2, either up or down. The only way it could become a 3-digit number
is for it to reach 99 (98 is a fixed point) and then go to 101, then to 102, and then back to
101, a cycle. Therefore 102 is an upper bound for the numbers in the chain. Because there
are only finitely many numbers available, the chain will repeat, and that makes a cycle.

Now consider 3-digit numbers. Such a number might generate a 4-digit number (e.g.,
999 — 1002). Note that any four digit number in the sequence will increase at the next
step by at most 4, so if a number in the chain goes from less than 2000 to greater than or
equal 2000, the latter number has to be one of 2000, 2001, 2002, 2003. But the number at the
next step will decrease, because there are more even digits than odd digits in each of these
numbers. The numbers in the sequence will continue to decrease until a number is reached
that is smaller than 2000, and then the terms may increase again, but our argument shows
that none will exceed 2003.



Similarly, no element in a chain generated by a four-digit number can exceed 20004 (to
go from less than 20000 to greater than or equal 20000 means it must take on one of the
numbers 20000, 20001, 20002, 20003, 20004, from where the sequence will decrease until it
dips below 20000, and so forth).

In general, no k-digit number will produce a chain that gets beyond By, = 2-10F 1+ % =

200...0+k. Again, this is because a k + 1-digit number can increase by at most £ + 1, so

k
to go from less that Bj to greater than or equal Bj, means that the latter number must be

one of B, By, +1,... B+ k. But these numbers each have more even digits than odd digits,
so the sequence will decrease until it reaches a number less than Bj.

In summary, the numbers in the chain generated by n are bounded above by 200...0+k,
N—_——

k
where k is the number of digits in n. Because there are only finitely many numbers available,

the sequence must eventually repeat, and this will make a cycle.

9. Take a permutation of the numbers 1 to 5 and consider the following procedure for
sorting them into increasing order. Pick any number that’s out of place, and wedge it to
its “proper” position, shifting others over to make room for it. Repeat this procedure as
long as there are numbers that are out of place. For example, take 3 51 2 4, and choose

the underlined out-of-place number at each step.

N0 DN BN OO Lo W
DN — WUt DY Ot Ut
WWH WOt =
N N S el e Y SN )
T OT O DN [

In this case, it’s taken 6 steps to sort the numbers into their proper order. It might have
taken no more than 5 steps, had we considered the numbers in order 1,2. 3,4, 5. On the

other hand, it might have taken more steps.

a. Give an example of a permutation of 1,2, 3.4,5 that might require as many as 15
steps to sort using this procedure. Your example should give the sequence of steps

by underlining the out-of-place numbers chosen for each step.

b. It turns out that this sorting procedure will always terminate in 15 steps or less.
Prove that there are an even number of permutations that may take as many as 15

steps to sort with this algorithm.



Solution. a. Here’s one permutation and choice of out-of-place numbers that takes 15 steps
(one can be led to this by looking for the longest stretch of steps needed to sort 1,2,3, or
1,2, 3,4, by this algorithm).

5 1 2 3 4 2 3 4 5 1
5 1 2 4 3 3 2 4 5 1
o 1 3 2 4 2 4 3 5 1
o 1 3 4 2 4 2 3 5 1
5 2 1 3 4 2 3 5 41
5 2 1 4 3 3 2 5 41
5 2 3 1 4 2 5 3 41
o 2 3 4 1 5 2 3 4 1
1 5 2 3 4 2 3 4 1 5
1 5 2 4 3 3 2 4 1 5
1 5 3 2 4 2 4 3 1 5
1 5 3 4 2 4 2 3 1 5
1 2 5 3 4 2 3 1 4 5
1 2 5 4 3 3 2 1 4 5
1 2 3 5 4 21 3 45
1 2 3 45 1 2 3 45

There are exactly 16 permutations (this is a task for a computer!) that may require 15
steps:
54132 54123 53412 51423 51234 45213 45132 45123
43521 43521 45231 34251 23451 35412 43512 34512

b. Let’s say that 1 and 5 are “complements” of each other, that 2 and 4 are complements
of each other, and 3 is its own complement. Also, let’s say that the permutations a b ¢ d e
and e d ¢ b a are “reverses” of each other. Denote the complement of a number a (between
1 and 5) by @.

The key idea is to observe that if permutation a b ¢ d e requires 15 steps for a certain
choice of out-of-place numbers, then the “reverse-complement” € d ¢ b @ is also a permutation
that requires 15 steps for a certain choice of out-of-place numbers. An example will make
this clear: Suppose we start with permutation 5 4 2 1 3. If, in the next step, we choose
to place 4, we get the next permutation in the algorithm: 5 2 1 4 3. This corresponds to
choosing 2 as the out-of-place number in the reverse-permutation: namely, from 3 5 4 2 1
(the reverse-complement) to 3 2 5 4 1. Now observe that the reverse-complement of this
permutation is 5 4 2 1 3 (as we had obtained earlier).

This implies that the permutations that require 15 steps for a certain choice of out-of-
place numbers come in pairs (mainly, a permutation and its reverse-complement), PRO-
VIDED no permutation is equal to its reverse-complement. So suppose a permutation

abcdewere equal toed ¢ ba Then c =¢ so c = 3. But observe that a b 3 d e could



be reached, by means of the algorithm, from any of four different permutations: namely,
3abde; a3bde; abd3e abde3 Butthis would mean that each of these
permutations could require 16 steps to sort using appropriate out-of-place numbers along
the way, and we’re told that no permutation takes more than 15. This contradiction implies
that no permutation requiring 15 steps is equal to its reverse-complement, and our proof is

complete.

10. For each positive integer n, let N(n) = [g-‘ + {%-‘ + [%-‘ +o 4 H—H where k is the

unique integer such that 281 < n < 2% and [2] denotes the smallest number greater

than or equal to .
a. For which numbers n is N(n) = n?

b. Prove that your characterization in part a is correct.

Answer. (a.) There are at least two equivalent characterizations: (i) N(n) = n if and only
if the binary expansion of n consists of a string of 1’s followed by a string of 0’s (the string
of 0’s might be empty); (ii) N(n) = n if and only if n can be written as 2% — 2¢ with & > /.

Solution. (b.) In binary notation, dividing by 2 just moves the decimal point one place to

the left. So, if dkdk_1 .. .d2d1d0 is the binary representation of n, then

N(n) =[d,d d,.d ]+ 1d.d

L ...d.d, o dydidg ]+ [ d d.d,|+[.dd,

170 k=110 k dtj}'

k—=1"""7170

Now suppose that n =11...100...0 in binary notation. Then
H/—/\—\Z—/
k

N(n)=11...100...0.0+11...100...0.00+---+11...1.00...0 +
S—— — S—— N—— S——

k /-1 k -2
[11... 1.1+ 11... 1114+ [.11...1]
k-1 k—2
_ =1 | of—2 |
_11...1(2 4272 +1)+
k
(11...1+1) + (1L...14+)+---+(14+1)+1
N—— N———
k—1 k—2
:11...1(25—1)+(2"?*1+2’“—2+---+1)
k



To show that these are the only numbers that satisfy N(n) = n we will prove that
N(n) = n+number of zeros between the first and last 1 in the binary representation of n
(which proves that the described numbers satisfy the equation and they are the only ones that
do s0). For example, N(1100101000) = 1100101000 + 3, whereas N (11110000) = 11110000.

First, suppose that n has binary representation n = dkdk_1 ... dyd, 1, where dk = 1. Then
N(n) = (dk d_,d _, dy d, d1) + 1+
(dk d_, - dy dz) + 1+
d, - d) +1+
(d, d,_)+ 1+
d +1+
0 + 1.

and now adding along the diagonals,

N(n) :dk(1+2+22+---+2’f*1)+dk_1(1+2+...+2k:72) N

d

(24 2P e (14 2) +d, (kD)

=d (2 1) +d_ (2" —1)+d_,(2"T-1)++d(2-1) + (h+1)
=d (2" =1)+d_ (2" =)+ +d(2-1) + (1 - 1) + (k+1)

=n—(d +d_,+d .+ --+d+dy+d +1) +(k+1)

The second term is the sum of the cocfficients of n which is just equal to the number of 1’s
in its binary representation. Since there are k+1 binary digits in the binary expression for
n, (k+1) — (dk +d - +d + 1) is just the number of 0’s in the binary expression.

For the general case, suppose n = m - 2°, where m is odd. Then the binary form for m

is lxx ... x1, for some binary digits zx ...z, so

Nn)=m-2°"14+m 22 4 ... 4 m + N(m)
=m(27 42724 £ 24+ 1) + N(m)
= m(23 - 1) + (m + the number of zeros in the binary expansion of m)

=n+ the number of zeros between the first and last 1 in the binary form for n.

In summary, N(n) = n if and only if the binary expansion of n consists of a string of 1’s
followed by a (possibly empty) string of 0’s. Equivalently, N(n) = n if and only if n is the
difference of two powers of 2 (11...100...0=11...1-2% = (2"“ - 1)23 = okts _ 99),
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