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10.

Twentieth Annual Iowa Collegiate Mathematics Competition
University of Northern Iowa, Saturday, March 1, 2014

To receive full credit, all problems require complete justification.

. Find the point on the parabola y = 22 — 4z + 3 that is closest to the line

Yy =—2x —5.

. Determine whether there exists an infinite sequence (a,)$2 ; of positive

numbers, such that the series Y.~ | s,, is convergent, where

S, = ai+as+...+an
n — n .

Let a and b be positive integers such that 8¢ = 13b. Show that the integer
a + b is composite.

. Define the subset of complex numbers A = {z : |z| = V2|2 — v/2|}. Find

max e al|z|.( For a complex number z = a + bi, its norm |z| is defined by

2] = Va? + 12

Given positive integers ni, no,...,n1go such that
1 1 1

Tyttt s = 20

Prove that at least two of the integers are equal.

: 1 dz
Evaluate the integral f 1 TP/

(Hint: consider the even and the odd part of the given integrand function.)

In a certain triangle each height is an integer multiple of the radius of the
inscribed circle. Prove that the triangle is equilateral.

Determine whether there exist integers a, b, c and d, such that the last four
digits of (a + b)(b+ ¢)(c + d)(d + a) are 2014.

A bag contains 60 tokens, each one has value of 2, 3, 4, 5 or 6 dollars.
Prove that one can choose some of them (without replacement) with the
total value of $60.

Let
1 0 0 O
1 1 0 0
A= 0 1 10
-1 -1 0 1

For a positive integer n, let F'(n) denote the sum of the absolute values of
all the entries of A”. Find the smallest n, for which F(n) > 2014.



