Seventh Annual Iowa Collegiate Mathematics Competition

Iowa State University
March 31, 2001
Problems by Jerry Heuer of Concordia College

Problem 1. Side of a triangle.
If the area of an equilateral triangle is $3 / 4$, what is the length of each side?

Problem 2. Solve for x.

Find all real solutions of the equation $\lfloor x\rfloor^{2}-5\lfloor x\rfloor-6=0$.
Here $\lfloor x\rfloor_{\text {denotes, as usual, the greatest integer less than or equal to } \mathrm{x} \text {. }}$

Problem 3. Taylor's Theorem.
According to Taylor's Theorem, if $f_{\text {is a twice differentiable fucntion on an interval containing } a \text { and } b \text {, with }}$ $a \neq b$, then there is a number c between a and b such that

$$
f(b)-f(a)=f^{\prime}(a)(b-a)+\frac{f^{\prime \prime}(c)}{2}(b-a)^{2}
$$

Express c as simply as possible in terms of a and b if $f(x)=x^{3}$.

Problem 4. An irrational number.
Let r and s be positive rational numbers with \sqrt{r} irrational. Prove that $\sqrt{r}+\sqrt{s}$ is irrational.

Problem 5. Multiplicative inverses.

Let R be the ring of integers modulo 2001. For example, in $R, 1900+125=24$ and $90^{2}=96$.
(a) Determine whether the element 1334 has a multiplicative inverse in R, and if so, find it. If not show this.
(b) Do the same for the element 1333.

Problem 6. A harmonic identity.
For each positive integer n , let $h(n)=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$.
Prove that for every integer $n \geq 2, n+h(1)+h(2)+\cdots+h(n-1)=n h(n)$.

Problem 7. Sum of squares divisible by n.

A certain set of n integers has the property that the difference between the product of any $n-1$ of them and the remaining one is divisible by n. Prove that the sum of the squares of all n integers is divisible by n.

Problem 8. Sum the series.

Find the sum of the series $\sum_{n=1}^{\infty} \frac{n^{2}+3 n}{3^{n}}$, and justify your answer.

Problem 9. A multiple of 49.

Afer serveral applications of the operation of differentiation and the operation of multiplication by $x-1$, performed in unspecified order, the polynomial $x^{8}+x^{7}$ is changed to $a x+b$, where $a \neq 0$.

Prove that $a-b$ is an integer divisible by 49 .

Problem 10. Integer roots.

Find all real numbers p such that all three roots of the cubic equation $5 x^{3}-5(p+1) x^{2}+(71 p-1) x+1=66 p$ are positive integers.

[Iowa Section MAA] [Department Liaisons] [Section Officers]

[Section Newsletter] [Math Contest] [Teaching Award]
Please send corrections, comments and suggestions regarding the Iowa MAA Web pages to Russ Campbell, campbell@math.uni.edu, or Cal Van Niewaal, cvanniew@coe.edu.

